没有耳机仓怎么唤醒airpods( 四 )


2-3、使用 MEMS 加速度计骨传导传感器(上行降噪)
Apple Airpods,使用多重手段(LPSD、BF、骨导降噪)在背了“不改变用户使用习惯”的大锅条件下,唤醒词误唤醒处里约有 7db~9db 的效果(用户背后 0.5 米环境噪声 45db 与仅做 BF及 NS 处里的唤醒词开发板对比) 。
AirPods支持唤醒词(本地,云端或本地+手机),所有的语音命令都在云端,在云端的优点是词汇的弹性无限,只要语义近似全都能用,识别精度更高,抗噪能力较强,占用本地芯片的资源较少,缺点是无法联网或联网品质不好时使用体验急速劣化甚至无法使用,响应速度较慢 。
市场上能用于上行降噪的加速度传感器除了使用压电材料的 vpu(模拟输出)外,ST 意法半导体使用 MEMS 技术的LIS25BA(TDM 接口)是市场上唯一的产品,LIS25BA 是一个全数字产品,内含 A/D 及 TDM 接口,相关信息可以向 ST意法半导体索取 。
虽然市场上有传感器可用,但受限于权利保护覆盖面强大严谨的苹果专利及担负改变上行声音数据声结构所造成风险的技术难度,眼下市场上还没有可流通的专用降噪算法,DSPC,Sensory,高通这些知名算法大拿都还没有明显动静,但一些国内 MEMS麦克风的厂家及一些国内算法公司已隐隐传出动静 。
下面将对骨传导上行降噪算法的难度提出一些看法,因技术能力与知识范围有限,谬误之处还请包涵指教 。这里简单的谈下骨传导与麦克风融合的上行降噪技术 。
在进入主题前首先为大家介绍一篇来自肖新华先生在 2009 年提出的研究生毕业论文,让大家对后面提及的”TWS耳机语音算法技术难度”有个衡量基础:
《国防科学技术大学研究生院工程硕士学位论文:面向骨传导语音消噪算法及硬件实现技术研究》
资料来源、论文作者:肖新华
这是一篇以非负稀疏编码 NNSC(Non-Negative Sparse Coding)为消噪核心主体并带上一个使用AMDF (Average Magnitude Difference Function)技术的 VAD 算法配合消除风噪,枪炮声,摩擦声 。
这并非苹果公司使用的降噪技术,但可以让大家对骨传导降噪或 VAD 做个初步了解,这篇论文以人为可懂度衡量对象,用骨传导传感器感测的声带振动为主声源,一个传统麦克风做噪音拾取噪声源,通过算法完成降噪处里 。
但现在可懂度的衡量对象除了人还有机器(语音识别算法),而机器对于可懂度的要求要比人高很多,因为机器对语音识别的整体智能还远不如人 。
这里整理了一张对照表,以苹果的 TWS 耳机做为参照标准,比较使用 2 种完全不同性质的声传感器所感测到的声音信息数据在处理完降噪问题后要等于 1种声传感器所感测到的声音信息数据,将可能将要面临到多少问题及挑战 。
下面依据上表把问题做文字条列叙述式的整理:
1)双麦上行降噪算法技术的终极目标:只留下用户说话的声音,最大程度消去或压制,非用户
本人声带运动所发出的所有声音,但必须让降噪处理后的上行声音信息数据与使用传统麦克
风拾取到的用户原始说话声音信息数据完全相等 。
2)算法使用了加速度骨传导传感,改变了过去由空气介质传导声能量,推动某种材料做成的


以上关于本文的内容,仅作参考!温馨提示:如遇健康、疾病相关的问题,请您及时就医或请专业人士给予相关指导!

「四川龙网」www.sichuanlong.com小编还为您精选了以下内容,希望对您有所帮助: