kafka简单的入门案例 kafka应用实例( 五 )


消费顺序
一个partition同一个时刻在一个consumer group中只能有一个consumer instance在消费,从而保证消费顺序 。
consumer group中的consumer instance的数量不能比一个Topic中的partition的数量多,否则,多出来的consumer消费不到消息 。
Kafka只在partition的范围内保证消息消费的局部顺序性,不能在同一个topic中的多个partition中保证总的消费顺序性 。
如果有在总体上保证消费顺序的需求,那么我们可以通过将topic的partition数量设置为1,将consumer group中的consumer instance数量也设置为1,但是这样会影响性能,所以kafka的顺序消费很少用 。
Java客户端访问Kafka引入maven依赖<dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>2.4.1</version> </dependency>
消息发送端代码(生产者)package com.yundasys.usercenter.collect.api.vo.req;import com.alibaba.fastjson.JSON;import com.fasterxml.jackson.databind.ser.std.StringSerializer;import org.apache.kafka.clients.producer.*;import java.util.Properties;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;/** * @program: usercenter-portrait-collect * @description: MsgProducer * @author: yxh-word * @create: 2021-07-14 * @version: v1.0.0 创建文件, yxh-word, 2021-07-14 **/public class MsgProducer {private final static String TOPIC_NAME = "my-replicated-topic";public static void main(String[] args) throws InterruptedException, ExecutionException {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094");/*发出消息持久化机制参数(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息 。性能最高,但是最容易丢消息 。(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入 。就可以继续发送下一条消息 。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失 。(3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据 。这是最强的数据保证 。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置 。*//*props.put(ProducerConfig.ACKS_CONFIG, "1");*//*发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理*//*props.put(ProducerConfig.RETRIES_CONFIG, 3);//重试间隔设置props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MBprops.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);*//*kafka本地线程会从缓冲区取数据,批量发送到broker,设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去*//*props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);*//*默认值是0,意思就是消息必须立即被发送,但这样会影响性能一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长*//*props.put(ProducerConfig.LINGER_MS_CONFIG, 10);*///把发送的key从字符串序列化为字节数组props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());//把发送消息value从字符串序列化为字节数组props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());Producer<String, String> producer = new KafkaProducer<String, String>(props);int msgNum = 5;final CountDownLatch countDownLatch = new CountDownLatch(msgNum);for (int i = 1; i <= msgNum; i++) {Order order = new Order(i, 100 + i, 1, 1000.00);//指定发送分区/*ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, 0, order.getOrderId().toString(), JSON.toJSONString(order));*///未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNumProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));//等待消息发送成功的同步阻塞方法/*RecordMetadata metadata = https://www.520longzhigu.com/diannao/producer.send(producerRecord).get();System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset());*///异步回调方式发送消息producer.send(producerRecord, new Callback() {public void onCompletion(RecordMetadata metadata, Exception exception) {if (exception != null) {System.err.println("发送消息失败:" + exception.getStackTrace());}if (metadata != null) {System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset());}countDownLatch.countDown();}});//送积分 TODO}countDownLatch.await(5, TimeUnit.SECONDS);producer.close();}}消费者代码package com.yundasys.usercenter.collect.api.vo.req;import com.fasterxml.jackson.databind.deser.std.StringDeserializer;import org.apache.kafka.clients.consumer.ConsumerConfig;import org.apache.kafka.clients.consumer.ConsumerRecord;import org.apache.kafka.clients.consumer.ConsumerRecords;import org.apache.kafka.clients.consumer.KafkaConsumer;import java.time.Duration;import java.util.Arrays;import java.util.Properties;/** * @program: usercenter-portrait-collect * @description: MsgConsumer * @author: yxh-word * @create: 2021-07-14 * @version: v1.0.0 创建文件, yxh-word, 2021-07-14 **/public class MsgConsumer {private final static String TOPIC_NAME = "my-replicated-topic";private final static String CONSUMER_GROUP_NAME = "testGroup";public static void main(String[] args) {Properties props = new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094");// 消费分组名props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);// 是否自动提交offset,默认就是trueprops.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");// 自动提交offset的间隔时间props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");//props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");/*当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费latest(默认) :只消费自己启动之后发送到主题的消息earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)*///props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");/*consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将rebalance方案下发给consumer,这个时间可以稍微短一点*/props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);/*服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,对应的Partition也会被重新分配给其他consumer,默认是10秒*/props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);//一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);/*如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,会将其踢出消费组,将分区分配给别的consumer消费*/props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);consumer.subscribe(Arrays.asList(TOPIC_NAME));// 消费指定分区//consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));//消息回溯消费/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*///指定offset消费/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*///从指定时间点开始消费/*List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);//从1小时前开始消费long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;Map<TopicPartition, Long> map = new HashMap<>();for (PartitionInfo par : topicPartitions) {map.put(new TopicPartition(topicName, par.partition()), fetchDataTime);}Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {TopicPartition key = entry.getKey();OffsetAndTimestamp value = https://www.520longzhigu.com/diannao/entry.getValue();if (key == null || value == null) continue;Long offset = value.offset();System.out.println("partition-" + key.partition() + "|offset-" + offset);System.out.println();//根据消费里的timestamp确定offsetif (value != null) {consumer.assign(Arrays.asList(key));consumer.seek(key, offset);}}*/while (true) {/** poll() API 是拉取消息的长轮询*/ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = https://www.520longzhigu.com/diannao/%s%n", record.partition(),record.offset(), record.key(), record.value());}/*if (records.count() > 0) {// 手动同步提交offset,当前线程会阻塞直到offset提交成功// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了consumer.commitSync();// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {if (exception != null) {System.err.println("Commit failed for " + offsets);System.err.println("Commit failed exception: " + exception.getStackTrace());}}});}*/}}}Spring Boot整合Kafka引入spring boot kafka依赖:<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency>


以上关于本文的内容,仅作参考!温馨提示:如遇健康、疾病相关的问题,请您及时就医或请专业人士给予相关指导!

「四川龙网」www.sichuanlong.com小编还为您精选了以下内容,希望对您有所帮助: